<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<style type="text/css" style="display:none;"> P {margin-top:0;margin-bottom:0;} </style>
</head>
<body dir="ltr">
<div class="elementToProof" style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
Hi Everybody,</div>
<div class="elementToProof" style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
<br>
</div>
<div class="elementToProof" style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
This week in the Peripatetic Seminar at <b>14:00 in ICT 616</b> we have a visitor, Rose Kudzman-Blais (University of Ottawa), giving the talk! Rose is a category theory PhD student supervised by Rick Blute and she will be graduating soon. The details of the
talk follow the body of this email. In the meantime, I hope to see you all there!</div>
<div class="elementToProof" style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
<br>
</div>
<div class="elementToProof" style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
Cheers,</div>
<div class="elementToProof" style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
Geoff</div>
<div class="elementToProof" style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
<br>
</div>
<div class="elementToProof" style="text-align: left; text-indent: 0px; background-color: rgb(255, 255, 255); margin: 0px; font-family: HelveticaNeue; font-size: 15px; color: rgb(0, 0, 0);">
Title: Cartesian Linearly Distributive Categories: Revisited</div>
<div class="elementToProof" style="text-align: left; text-indent: 0px; background-color: rgb(255, 255, 255); margin: 0px; font-family: HelveticaNeue; font-size: 15px; color: rgb(0, 0, 0);">
<br>
</div>
<div class="elementToProof" style="text-align: left; text-indent: 0px; background-color: rgb(255, 255, 255); margin: 0px; font-family: HelveticaNeue; font-size: 15px; color: rgb(0, 0, 0);">
Speaker: Rose Kudzman-Blais (University of Ottawa)</div>
<div class="elementToProof" style="text-align: left; text-indent: 0px; background-color: rgb(255, 255, 255); margin: 0px; font-family: HelveticaNeue; font-size: 15px; color: rgb(0, 0, 0);">
<br>
</div>
<div class="elementToProof" style="text-align: left; text-indent: 0px; background-color: rgb(255, 255, 255); margin: 0px; font-family: HelveticaNeue; font-size: 15px; color: rgb(0, 0, 0);">
Location: ICT 616</div>
<div class="elementToProof" style="text-align: left; text-indent: 0px; background-color: rgb(255, 255, 255); margin: 0px; font-family: HelveticaNeue; font-size: 15px; color: rgb(0, 0, 0);">
<br>
</div>
<div class="elementToProof" style="text-align: left; text-indent: 0px; background-color: rgb(255, 255, 255); margin: 0px; font-family: HelveticaNeue; font-size: 15px; color: rgb(0, 0, 0);">
Time: 14:00</div>
<div class="elementToProof" style="text-align: left; text-indent: 0px; background-color: rgb(255, 255, 255); margin: 0px; font-family: HelveticaNeue; font-size: 15px; color: rgb(0, 0, 0);">
<br>
</div>
<div class="elementToProof" style="text-align: left; text-indent: 0px; background-color: rgb(255, 255, 255); margin: 0px; font-family: HelveticaNeue; font-size: 15px; color: rgb(0, 0, 0);">
Abstract: Linearly distributive categories (LDC) were introduced by Cockett and Seely as alternative categorical semantics for multiplicative linear logic, taking conjunction and disjunction as primitive notions. Given that a LDC has two monoidal products,
it is natural to ask when these coincide with categorical products and coproducts. Such LDCs, known as cartesian linearly distributive categories (CLDC), were introduced alongside LDCs. Initially, it was believed that CLDCs and distributive categories would
coincide, but this was later found not to be the case. Consequently, the study of CLDCs was largely abandoned. In this talk, we will revisit the notion of CLDCs, demonstrating strong structural properties they all satisfy and investigating two key classes
of examples: bounded distributive lattices and semi-additive categories. Additionally, we re-examine a previously assumed class of CLDCs, the Kleisli categories of exception monads of distributive categories, and show that they do not, in fact, form CLDCs.</div>
<div class="elementToProof" style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
<br>
</div>
</body>
</html>